Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks
نویسندگان
چکیده
MOTIVATION Spatio-temporal regulation of gene expression is an indispensable characteristic in the development processes of all animals. 'Master switches', a central set of regulatory genes whose states (on/off or activated/deactivated) determine specific developmental fate or cell-fate specification, play a pivotal role for whole developmental processes. In this study on genome-wide integrative network analysis the underlying design principles of developmental gene regulatory networks are examined. RESULTS We have found an intriguing design principle of developmental networks: hub nodes, genes with high connectivity, equipped with positive feedback loops are prone to function as master switches. This raises the important question of why the positive feedback loops are frequently found in these contexts. The master switches with positive feedback make the developmental signals more decisive and robust such that the overall developmental processes become more stable. This finding provides a new evolutionary insight: developmental networks might have been gradually evolved such that the master switches generate digital-like bistable signals by adopting neighboring positive feedback loops. We therefore propose that the combined presence of positive feedback loops and hub genes in regulatory networks can be used to predict plausible master switches. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملTarget hub proteins serve as master regulators of development in yeast.
To understand the organization of the transcriptional networks that govern cell differentiation, we have investigated the transcriptional circuitry controlling pseudohyphal development in Saccharomyces cerevisiae. The binding targets of Ste12, Tec1, Sok2, Phd1, Mga1, and Flo8 were globally mapped across the yeast genome. The factors and their targets form a complex binding network, containing p...
متن کاملH∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کامل-
The homeobox genes are known to play a crucial role in controlling the development of multicellular organisms. The majority of these genes have been determined to express regulatory proteins act as a regulatory protein. These trans-acting factors regulate the expression of proteins that are necessary during the developmental processes throughout the body. TGIFLX/Y is a homeobox gene and it cont...
متن کاملIdentification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis
To understand the gene expression networks controlling soybean seed set and size, transcriptome analyses were performed in three early seed developmental stages, using two genotypes with contrasting seed size. The two-dimensional data set provides a comprehensive and systems-level view on dynamic gene expression networks underpinning soybean seed set and subsequent development. Using pairwise c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 25 15 شماره
صفحات -
تاریخ انتشار 2009